
1.a. A=D=E  > B=C  

Suppose each battery has a potential difference VB.  By Kirchhoff’s loop rule, the voltage across 

A, D, and E must be –VB.  The potential differences across B and C must add to –VB and, by 

symmetry, have the same value of 
−𝑉𝐵

2
. 

1.b. Circuit 3.  Circuit 2. 

The energy expended by a battery is equal to the power output of that battery multiplied by the 

time span over which the power is output.  If each battery has the same stored energy, the greater 

the power output, the lesser the time for which the power can be produced.  By conservation of 

energy, the power output by the bulb systems equals in magnitude the power input by the battery, 

and the power output of the systems can be determined with the equation P = 
−𝑉2

𝑅
 where V is the 

voltage across the system and R is the resistance of the system.  Because the batteries are 

identical, V across each system is the same by Kirchhoff’s loop rule.  Therefore, the greater the 

resistance of the system, the lesser the power output of the system.  Assuming each bulb has a 

resistance R, the resistance of Circuit 1 is R, the resistance of circuit 2 is 2R, and the resistance of 

circuit 3 is 
𝑅

2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.a.i. 

 

2.a.ii. 

- Use the mass balance to find the mass of the given block (mB) in kilograms. 

- Securely clamp the board flat to a lab table. 

- Securely tie a string around the center of the block and connect that string to a spring scale. 

- Place a 1kg mass on top of the block and the block on top of the board. 

- Use the spring scale to pull the block horizontally, gradually increasing the force applied.  

Record the force (Fmax) applied by the spring scale at the instant just before it slips and begins 

sliding across the board. 

- Repeat the above step ten times and then find the average maximum force applied (Favg) 

2.b. 

At the instant before the block slips, |Fstatic friction| = |Fspring scale| = Favg  because ΣF = ma and a = 0 

Fstatic friction, max = μ·FN and FN = (1 + mB)g 

Favg = μ·(1 + mB)g therefore μ = 
𝐹𝑎𝑣𝑔

(1 + 𝑚𝐵)g
 

2.c. The static and kinetic coefficients are not equal.  Although the average kinetic coefficient 

equals the average static coefficient, six of the seven groups determined that the kinetic 

coefficient was less than the static coefficient.  Therefore, it is more likely that lab group five 

reached erroneous values than there being an actual equivalence of static and kinetic values, with 

the differences due to random errors and uncertainty.  

2.d. Remains the same.  The coefficient of static friction is a property of the two surfaces and 

independent of the force pushing them together.  Adding mass to the block will increase the Favg 

described above, but it will also increase the normal force proportionally.   

If μstatic friction = 
𝐹𝑎𝑣𝑔

𝐹𝑁
, the coefficient of static friction will stay the same. 



3.a. To the right of C. 

If the rod is much more massive than the disk, Irod + disk ≈ Irod and the final angular momentum of 

the system will be L ≈  Irod·ωfinal.  Angular momentum is conserved in the collision, so the 

greater the initial angular momentum, the greater the final angular momentum, thus the greater 

the final angular velocity.  The initial angular momentum of the disk is the cross product of its 

radius (from the pivot) and linear momentum (which is constant).  The point to the right of C has 

the highest radius of the three choices. 

3.b. Yes.  The equation provided shows that, as x increases, ω increases.  This is the same result 

described above and agrees with the prediction that ω will be highest when the disk strikes a 

point to the right of C. 

3.c. This equation shows that the higher the rotational inertia of the rod, the higher the angular 

velocity.  This does not make sense because rotational inertia is a measure of resistance to 

changes in angular velocity.  Therefore, the higher the rotational inertia of the rod, the smaller 

should be the final angular velocity caused by the torque applied by the sliding disk collision. 

3.d. 

Li = Lf 

mdisk·v0·x = (I + mdisk·x
2
)·ω 

ω = 
𝑚𝑑𝑖𝑠𝑘·𝑣0·𝑥

𝐼+ 𝑚𝑑𝑖𝑠𝑘·𝑥2  

3.e. Greater than.  If angular momentum is conserved for the disk/rod system, then the change in 

angular momentum of the disk plus the change in angular momentum of the rod equals zero.  

When the disk bounces backwards, its change of angular momentum is greater in magnitude than 

when it sticks to the rod, therefore the change in angular momentum of the rod is also greater in 

magnitude.  This implies the change in the rod’s angular velocity is greater. 

 

 

 

 

 

 

 

 



4.a. No.  From its point of release to the point at which is leaves the table, Block 1 has a greater 

vertical descent.  If energy is conserved, this greater loss of gravitational potential energy implies 

a greater increase in kinetic energy.  Block 1 therefore leaves the table at a higher velocity.  

Blocks 1 and 2 fall the same distance, h, during their flights and have the same vertical initial 

velocity of zero and the same acceleration due to gravity.  The times of the two flights are then 

the same, so if Block 1 is moving faster horizontally during that time, it will travel farther. 

4.b.i. The blocks land the same distance from their respective tables.  The logic is the same as in 

4a.  From the points of release to the points at which the blocks leave the table, both have the 

same vertical descent, same loss of gravitational energy, same gain of kinetic energy, and same 

increase in speed.  In flight, the two blocks have the same distance of descent, initial vertical 

velocity of zero, and gravitational acceleration, therefore the same time of descent.  If the two 

blocks leave the table with the same horizontal speed and fly for the same time, the two 

horizontal distances before landing will be the same. 

4.b.ii.  Block 1.  As described above, in flight, the two blocks have the same distance of descent, 

initial vertical velocity of zero, and gravitational acceleration, therefore the same time of descent.  

However, the times with which they descend the ramps will be different.  For a path involving 

vertical descent and horizontal displacement, the least time traveled is achieved along the path of 

a brachistochrone.  The ramp for Block 1 is closer to this curve than the ramp for Block 2, so 

Block 1 will descend its ramp in less time, making the total time less for Block 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.a. 

 

5.b. 

 

 


