
Minimum and maximum values, Lagrange multipliers 
 

In a process very similar to that in single-variable calculus, we look for minima and maxima by 

finding points where the first derivatives are zero: 

 

fx = 
𝜕𝑓

𝜕𝑥
 = 0 and fy = 

𝜕𝑓

𝜕𝑦
 = 0 

 

These are points where the tangent plane is parallel to the xy plane. 

 

A critical point is defined as a point where fx = 0 and fy = 0, or where one of these does not exist.  

However, a critical point need not be a maximum or minimum.  Take, for example, the curve: 

z = y
2
 – x

2
 

 

fx = -2x and  fy = 2y 

 

so the one critical point is at (0,0) 

 

  
However, as seen in the graph above, this point is neither a minimum nor maximum, but rather a 

saddle point. 

 

To test critical points for being a maximum, minimum, or neither, we use something similar to 

the second derivative test in single-variable calculus. 

 

First we define the function: 

 

D(a,b) = fxx(a,b)·fyy(a,b)  - [fxy(a,b)]
2
  such that 

 

1. If D(a,b) > 0 and fxx(a,b) > 0, then the point is a minimum 

2. If D(a,b) > 0 and fxx(a,b) < 0, then the point is a maximum 

3. If D(a,b) < 0, the point is neither and is instead a saddle point 

4. If D(a,b) = 0, the nature of the point is unresolved 

 

Where this set of rules comes-from is not particularly instructive, so I will leave it for an 

appendix at the end of the notes. 



As an example, let’s find the critical points for f(x,y) = x
2
 + xy + y

2
 + y and determine if they are 

maxima, minima, or saddle points. 

 

First, find the partial derivatives and set them equal to zero: 

fx = 2x + y = 0  

fy = x + 2y + 1= 0 

Has only one solution at (
1

3
,

−2

3
). 

 

Then use the second derivatives test: 

 

fx = 2x + y and  fxx = 2  and  fxy = 0 

fy = x + 2y and fyy = 2 

 

D(a,b) = fxx(a,b)·fyy(a,b)  - [fxy(a,b)]
2
 = 4 – 0 = 4 

fxx = 2 

 

D > 0 and fxx > 0, therefore the point (
1

3
,

−2

3
) is a minimum at a value of - 

1

3
. 

 

To find the absolute maxima and minima within a given range of values, simply find the values 

at all critical points within the range and all values along the boundaries of the range. 

 

 

Now suppose we want to maximize some function, f(x,y,z) with the restraining condition that 

g(x,y,z) = k.  For instance, suppose we wanted to maximize the volume of a six-sided box with 

sides x, y, and z following the restraint that the total surface area used for the sides is not greater 

than k.  Mathematically: V = xyz and (2xy + 2yz + 2xz) ≤ k. 

 

To help visualize a geometric solution, imagine the simpler case of two variables:  We want to 

maximize the area of a piece of paper with the constraint that the perimeter is not greater than 16.  

Mathematically: A = xy and 2x + 2y ≤ 16.   

 



That means there is going to be some curve (out of a series of possible curves, some higher 

values of A, some lower) that just touches the line of 2x + 2y = 16 and satisfies that condition 

while being the highest value curve of A.  At that point of contact between the two curves, they 

share a common slope and thus also a common angle perpendicular to the slope (also known as 

the normal to the curve).  In the previous notes, we saw that the gradient vector is perpendicular 

to the tangent vector, so the two curves have a gradient vector pointed in the same direction 

(although they may differ by a scalar factor).  Mathematically, this would be: 

 

∇A(x,y) = λ·∇P(x,y) 

 
where A is area, P is perimeter, and λ is that scalar factor called a Lagrange multiplier. 

 

Extending these ideas into three dimensions (and using general functions f and g), we have: 

 

∇f(x,y,z) = λ·∇g(x,y,z) 

 
Here the visual would be a curved surface that follows the function f(x,y,z) and, in the same 

space, a series of level planes that follow the function g(x,y,z).  The maximum value of f that 

satisfies the constraint g will occur at the point where the surface of f just touches one of the 

planes of g. 

 

As an example, let’s return to the example of the six-sided box and give the restriction that the 

total surface area cannot be greater than 12.  We then have:   

 

V = xyz and A = 2xy + 2yz + 2xz 

 

Using the equation with the Lagrange multiplier, we have: 

 

∇f(x,y,z) = λ·∇g(x,y,z)  or ∇ V(x,y,z) = λ·∇A(x,y,z) 
 
which can be broken into components: 

 

Vx = λ·Ax or yz = λ·(2y + 2z) 

Vy = λ·Ay or xz = λ·(2x + 2z) 

Vz = λ·Az or xy = λ·(2y + 2x) 

 

with the further condition that:  12 = 2xy + 2yz + 2xz 

 

Altogether, we have four equations with four unknowns, which is a solvable system of equations.  

Such algebra is often very complicated, but here it is simple.  Because of the symmetry of the 

first three equations, we can know that x = y = z and the fourth equations becomes: 

 

12 = 2x
2
 + 2x

2
 + 2x

2
  and   x = y = z = √2 

 

where λ can be left unknown, though it here happens to be 
1

2√2
 



Lastly, we can make one further extension and suppose that the function f(x,y,z) has two 

constraints of g(x,y,z) = k and h(x,y,z) = c.  Then we simply use two Lagrange multipliers and 

solve for five unknowns: 

 

∇f(x,y,z) = λ·∇g(x,y,z) + μ·∇h(x,y,z) 
 

Geometrically, the two constraints would form two level surfaces that intersect at some curve, C.  

The maximum value of f will occur along this curve at point P and satisfy the conditions that ∇f 

is perpendicular to C and so are ∇g and ∇h. 

 

 

Appendix: 

 

If we take the second order directional derivative of f in the direction of the unit vector,  

u = <h,k>, we have: 

 

Duf = fxh + fyk 

 

Du
2
f = Du(Du)f = Du(fxh + fyk) = (fxxh + fyxk)h + (fxyh + fyyk)k = fxxh

2
 + 2fxyhk + fyyk

2
 

 

Completing the square, this becomes: Du
2
f = fxx(h + 

𝑓𝑥𝑦

𝑓𝑥𝑥
𝑘)

2
 + 

𝑘2

𝑓𝑥𝑥
(fxxfyy – fxy

2
) 

 

Condition 1 states that, “If D(a,b) > 0 and fxx(a,b) > 0, then the point is a minimum”.  This is 

because both the first and second terms of Du
2
f are positive, making the second derivative 

positive and the curvature upward. 

 

Condition 2 states that, “If D(a,b) > 0 and fxx(a,b) < 0, then the point is a maximum”.  This is 

because both the first and second terms of Du
2
f are negative, making the second derivative 

negative and the curvature downward. 

 

Condition 3 states that, “If D(a,b) < 0, the point is neither and is instead a saddle point”.  This is 

because now the first and second terms have opposite signs and will curve up or down depending 

upon the value of fxx. 

 

 


