
Double integrals 
 

In the previous notes, we saw how to calculate the volume beneath a function f(x,y) above a 

rectangle in the x-y plane: 

 
 

We would now like to generalize this process so that we can find similar volumes above more 

complex shapes in the x-y plane. 

 

Suppose such a shape in the x-y plane is bounded at the top and bottom by the functions g2(x) 

and g1(x) with horizontal boundaries a and b: 

 
We can see such an enclosed volume would be written as: 

 

V = ∫ ∫ 𝑓(𝑥, 𝑦) · 𝑑𝑦 · 𝑑𝑥
𝑔2(𝑥)

𝑔1(𝑥)

𝑏

𝑎
 

 

 

Notice that the inner integral is assuming a fixed value for x as we integrate the strip along the y-

dimension. 

 

 

 



 

Likewise, if we had some enclosed space in the x-y plane defined by h2(y) and h1(y): 

 
 

V = ∫ ∫ 𝑓(𝑥, 𝑦) · 𝑑𝑥 · 𝑑𝑦
ℎ2(𝑦)

ℎ1(𝑦)

𝑑
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For example, let’s find the volume of the solid that lies under the surface of z = x
2
 + y

2
 and is 

above a region in the x-y plane bounded by y = 2x and y = x
2
. 

 

First, it’s a good idea to draw the bounded shape in the x-y plane to assist our translating the 

problem into a double integral: 

 

 
We can then calculate the left and right boundaries of this shaded area with x

2
 = 2x so that  

x1 = 0 and x2 = 2.   

 

 

 

 



We have a choice of integrating vertical strips from left to right or integrating horizontal strips 

from bottom to top.  Following the more common process, I will use the first: 

 

V = ∫ ∫ 𝑓(𝑥, 𝑦) · 𝑑𝑦 · 𝑑𝑥
𝑔2(𝑥)

𝑔1(𝑥)

𝑏
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V = ∫ ∫ (𝑥2 +  𝑦2) · 𝑑𝑦 · 𝑑𝑥
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The inner integral will become: 
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Which makes the outer integral: 
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It’s also possible to find enclosed volumes in a very similar manner using polar coordinates.  

Recall from the second set of notes, we had: 

 

R
2
 = x

2
 + y

2
  

x = R·cosθ 

y = R·sinθ 

 

We can then see that, instead of dA = dy·dx, which was true for Cartesian coordinates, we have: 

dA = r·dr·dθ 

 

 
 

 

 



If these small patches of defined area exist in the x-y plane with some surface function f(x,y) 

above the x-y plane, then the volume enclosed by the surface function and defined area would 

be: 

 

V = ∫ ∫ 𝑓(𝑥, 𝑦) · 𝑟 · 𝑑𝑟 · 𝑑𝜃
𝑟2

𝑟1

𝜃2

𝜃1
 

 

or 

 

 

V = ∫ ∫ 𝑓(𝑟 · 𝑐𝑜𝑠𝜃, 𝑟 · 𝑠𝑖𝑛𝜃) · 𝑟 · 𝑑𝑟 · 𝑑𝜃
𝑟2

𝑟1

𝜃2
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For example, let’s find the volume below the paraboloid z = 1 – x
2
 – y

2
 and above the x-y plane. 

 

First note that when we are in the x-y plane, z = 0 and the equation becomes the equation of a 

circle, x
2
 + y

2
 = 1.  The integral then becomes: 

 

V = ∫ ∫ (1 −  𝑟2) · 𝑟 · 𝑑𝑟 · 𝑑𝜃
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Remembering that the parenthetic term is z = f(x,y), which here is z = 1 – x

2
 – y

2
 = 1 – r

2
 

 

The inner integral is then 
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The outer integral is then 
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Lastly, in the same way we extended double integrals from a rectangular base to an irregular 

base in Cartesian coordinates, we can something similar with polar coordinates: 

 

V = ∫ ∫ 𝑓(𝑥, 𝑦) · 𝑟 · 𝑑𝑟 · 𝑑𝜃
𝑔2(𝜃)
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