
Dot Product and Cross Product 

 
The dot product (or scalar product) is the product of two vectors such that: 

 

A•B = (Ax·Bx + Ay·By + Az·Bz) 

 

It has the following properties: 

 

1. A•A = |A|
2
 where |A| is the magnitude of A 

 

2. A•B = B•A 

 

3. A•(B + C) = A•B + A•C 

 

4. (cA)•B = c(A•B) 

 

5. 0•A = 0 

 

As before, these are all easy to prove by writing A and B in their component forms. 

 

Another commonly used form of the dot product is: 

 

A•B = |A|·|B|·cosθ or cosθ = 
𝐀•𝐁 

|A|·|B|
 where θ is the angle between A and B 

 

 
We can see this using the diagram above and the law of cosines. 

 

|A – B|
2
 = |A|

2
 + |B|

2
 - 2|A|·|B|·cosθ 

 

(A – B)•(A – B) = A•A + B•B - 2|A|·|B|·cosθ 

 

A•A - 2A•B + B•B = A•A + B•B - 2|A|·|B|·cosθ 

 

cosθ = 
𝐀•𝐁 

|A|·|B|
 

 

From A•B = |A|·|B|·cosθ, we can see that if A and B are perpendicular, the dot product is zero, if 

parallel, the dot product is |A|·|B|, and if antiparallel, the dot product is -|A|·|B|. 



 
It is common to diagram a vector A with an angle off of the positive x-axis and to compute the x-

component of that vector as Ax = |A|cosα.  This would be true even if A were not in the xy plane. 

 

But to avoid being provincial, it is equally true that the y-component of the vector can be 

computed with Ay = |A|cosβ where β is the angle off of the positive y-axis. 

.   

Likewise, Az = |A|cosγ where γ is the angle between A and the positive z-axis. 

 

cosα, cosβ, and cosγ are called directional cosines where 

 

cosα = 
𝐴𝑥

|𝐀|
 cosβ = 

𝐴𝑦

|𝐀|
 cosγ = 

𝐴𝑧

|𝐀|
 

 

We can then write A = (Ax, Ay, Az)  = |A|·(cosα, cosβ, cosγ) 

 

or  
𝑨

|𝑨|
 = (cosα, cosβ, cosγ) where 

𝑨

|𝑨|
 is the unit vector of A 

 

The angles α, β, and γ are known as the directional angles. 
 

 

 



 
Suppose we have two vectors A and B.  We can draw a line from the tip of B to A so that this 

line is perpendicular to A.  This creates the green vector which we call the projection of vector B 

onto vector A or projAB. 

 

The signed magnitude (positive if A and the projection are parallel, negative if they are 

antiparallel) is called the component of B along A or compAB. 

 

Because compAB = |B|cosθ, we can say that the dot product of A and B is the length of A times 

the component of B along A. 

 

A•B = |A|·|B|·cosθ 

 

Rearranged, |B|·cosθ = 
𝑨

|𝐴|
• 𝑩 

 

The scalar component of B along A equals the unit vector of A dot B.  Conceptually, you can 

think of this as “how much of B is parallel to A”. 

 

To turn this back into a vector (the projection rather than the component), we multiply by the 

unit vector for A, which is 
𝑨

|𝐴|
. 

 

projAB = 
𝑨

|𝐴|
• 𝑩 ·

𝑨

|𝐴|
 = 

𝑨•𝑩

|𝐴|2  · 𝑨 

 

Conceptually, this is still “how much of B is parallel to A”, though now we have pointed it in the 

direction of A. 

 

 

We can think of the dot product as a quantity which signifies how parallel two vectors are.  We 

also find it useful to have a measurement of how perpendicular two vectors are.  This is what the 

cross product (or vector product) produces. 

 

Given two vectors: 

A = (Ax, Ay, Az) and B = (Bx, By, Bz) 

 

the cross product, A x B is a vector perpendicular to both A and B and has components: 

 

A x B = (Ay·Bz - Ay·Bz, Az·Bx – Ax·Bz, Ax·By - Ay·Bx) 



 

It is, however, much easier to remember when written as a determinant: 

 

A x B = 

𝐢 𝐣 𝐤
𝑨𝒙 𝑨𝒚 𝑨𝒛

𝑩𝒙 𝑩𝒚 𝑩𝒛

 

 

We can show that A x B is perpendicular to both A and B by showing (A x B)•A = 0 and  

(A x B)•B = 0 

 

For example: 

 

(A x B)•A = (Ay·Bz - Ay·Bz, Az·Bx – Ax·Bz, Ax·By - Ay·Bx)•(Ax, Ay, Az) = 

 

(Ay·Bz·Az - Ay·Bz·Az, Az·Bx·Ay – Ax·Bz·Ay, Ax·By·Az - Ay·Bx·Az) = (0, 0, 0) 

 

The second way of writing the cross product is: 

 

A x B = |A|·|B|·sinθ where θ is the smaller angle between vectors A and B 

 

We can show the equivalence of these two ways of determining the cross product as follows: 

 

|A x B|
2
 = (Ay·Bz - Ay·Bz)

2
+ (Az·Bx – Ax·Bz)

2
 +  (Ax·By - Ay·Bx)

2
  

 

because of the Pythagorean theorem 

 

Expanded and then rearranged, this becomes: 

 

(Ax
2
 + Ay

2
 + Az

2
) (Bx

2
 + By

2
 + Bz

2
) – (AxBx + AyBy + AzBz)

2
  

 

= |A|
2
·|B|

2
 – (A•B)

2
 

 

= |A|
2
·|B|

2
 – |A|

2
·|B|

2
·cosθ 

 

= |A|
2
·|B|

2
·(1 – cos

2
θ) 

 

= |A|
2
·|B|

2
·sin

2
θ 

 

Therefore, |A x B|
 
= |A|·|B|·sinθ 

 

This form tells us that if the two vectors are parallel or antiparallel, A x B = 0 

 

However, this form does not indicate the direction of the cross-product.  For this, we can use the 

right-hand rule.  Orient the palm of the right hand in the direction of the first vector (A) and then 

sweep the fingers to align with the second vector (B).  The direction of the thumb indicates the 

direction of the cross product. 



 

 

 

 
We can also see in the diagram above that |A x B|

 
= |A|·|B|·sinθ and is the area of a parallelogram 

with sides |A| and |B|. 

 

As before, the following list of cross product properties can easily be proved by writing the 

vectors in component form and completing the arithmetic: 

 

1. A x B = - (B x A) 

 

2. (cA) x B = c(A x B) = A x (cB) 

 

3. A x (B + C) = A x B + A x C 

 

4. (A + B) x C = A x C + B x C 

 

5. A•(B x C) = (A x B)•C 

 

6. A x (B x C) = (A•C)·B – (A•B)·C 

 

Notice from (1) that the cross product is not commutative and from (6) that the cross product is 

not associative.  The left side of the equation in (5) is called the scalar triple product while the 

left side of the equation in (6) is called the vector triple product. 

 

 

Expanding the scalar triple product into its components, you will find it can be written as the 

determinant: 

 

A•(B x C) = 

𝑨𝒙 𝑨𝒚 𝑨𝒛

𝑩𝒙 𝑩𝒚 𝑩𝒛

𝑪𝒙 𝑪𝒚 𝑪𝒛

 

 

 

 



 
This too has a geometric meaning seen in the diagram above, a parallelepiped with sides A, B, 

and C.  The parallelepiped has a base with an area |B x C| and a height of |A|cosθ where θ is the 

angle between A and the vector BxC.  So the volume of the parallelepiped = |A|·|(B x C)|·cosθ or 

 

V = A•(BxC) 


