Problem Set 6

- 1. Find a vector equation and parametric equations for the line through the point (6, -5, 2) and parallel to the vector $< 1, 3, -\frac{2}{3} >$.
- 2. Find parametric equations and symmetric equations for the line through the points (1.0, 2.4, 4.6) and (2.6, 1.2, 0.3).
- 3. Determine whether L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.

$$L_1$$
: $x = 3 + 2t$, $y = 4 - t$, $z = 1 + 3t$
 L_2 : $x = 1 + 4s$, $y = 3 - 2s$, $z = 4 + 5s$

- 4. Find an equation of the plane through the point (5, 3, 5) with a normal vector $2\mathbf{i} + \mathbf{j} \mathbf{k}$.
- 5. Use intercepts to sketch the plane of 2x + 5y + z = 10
- 6. Find the point at which the given line intersects the given plane.

$$x = 3 - t$$
, $y = 2 + t$, $z = 5t$
 $x - y + 2z = 9$

7. Determine whether the two planes are parallel, perpendicular, or neither. If neither, find the angle between them.

$$x + 4y - 3z = 1$$

-3x + 6y + 7z = 0

8. Find parametric equations for the line of intersection of the planes and find the angle between the planes:

$$x + y + z = 1$$
$$x + 2y + 2z = 1$$

- 9. Find the distance between the point (1, -2, 4) and the plane 3x + 2y + 6z = 5.
- 10. Find the distance between the two planes:

$$2x - 3y + z = 4$$
$$4x - 6y + 2z = 3$$