
Parametric Equations 

 

 
Suppose a cricket jumps off of the ground with an initial velocity v0 at an angle θ.  If we take his 

initial position as the origin, his horizontal and vertical positions follow the equations: 

 

x = v0·cosθ·t 

 

y = v0·sinθ·t – 
𝑔·𝑡2

2
 

 

These are called parametric equations, with time being the parameter upon which the positions 

depend. 

 

If we had numeric values for the initial velocity and angle, it would be easy to make a chart of 

the motion.  Supposing v0 = 2m/s and θ = 30º.   

 

x = 1.73·t 

y = t – 4.9·t
2
 

 

Time (s) x (m) y (m) 

0.0 0 0 

0.05 0.087 0.038 

0.10 0.173 0.051 

0.15 0.260 0.040 

0.20 0.346 0.004 

 

The graph of which is a simple parabola. 
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We can also eliminate the parameter through algebraic substitution: 

 

x = v0·cosθ·t so  t = 
𝑥

𝑣0·cosθ
 

 

y = v0·sinθ·t – 
𝑔·𝑡2

2
 so  y = v0·sinθ·(

𝑥

𝑣0·cosθ
) - 

𝑔

2
·(

𝑥

𝑣0·cosθ
)
2
 

 

y = x·tanθ - 
𝑔·𝑥2

2·𝑣0
2· 𝑐𝑜𝑠2𝜃

  which is exactly the parabola graphed above 

 

So the question arises, if we can extract the parameter and simply have y as a function of x, what 

is the value of parametric equations in the first place?  There are several answers: 

 

1. It is not always possible to extract the parameter from simultaneous equations.  Often, even 

when possible, the result is uninformatively complex. 

 

2. In many physical situations, we would like to know how the positions depend upon the 

parameter.  For the cricket, the parametric equations tell us where he is at any given time. 

 

3. The parametric equations provide a direction for the curve.  In our example, the cricket was 

clearly jumping from left to right, but extracting time from the equations and writing y as a 

function of x removed this information. 

 

 
We can see those advantages with another example, a car driving around in circle, counter-

clockwise.  Suppose the speed is a constant v, the radius of the track is R, the origin is at the 

center of the track, and the car has the position shown at time zero.  The parametric equations for 

the car’s horizontal and vertical positions are then: 

 

x = R·cos(
𝑣

𝑅
 · 𝑡) 

 

y = R·sin(
𝑣

𝑅
 · 𝑡) 

 

 

 



We can extract the parameter of time as follows: 

 

x
2
 + y

2
 = R

2
·cos

2 
(

𝑣

𝑅
 · 𝑡) + R

2
·sin

2
 (

𝑣

𝑅
 · 𝑡) = R

2
 or just x

2
 + y

2
 = R

2
 

 

But, again, this Cartesian version has the following disadvantages: 

 

1. x
2
 + y

2
 = R

2
 is not a function, so cannot be written in simple functional notation 

 

2. x
2
 + y

2
 = R

2
 does not tell us where the car is at any given time 

 

3. x
2
 + y

2
 = R

2 
does not tell us that the car is moving counter-clockwise 

 

 

What calculus can be applied to parametric equations? 

 

 
 

Suppose we wanted the instantaneous trajectory of the cricket at any time or position, that is, we 

want to find the tangent to the spatial curve, or 
𝑑𝑦

𝑑𝑥
. 

 

One way is to simply differentiate the equation y = x·tanθ - 
𝑔·𝑥2

2·𝑣0
2· 𝑐𝑜𝑠2𝜃

 and find 

 
𝑑𝑦

𝑑𝑥
 = tanθ - 

𝑔·𝑥

𝑣0
2· 𝑐𝑜𝑠2𝜃

 

 

Another is to use the parametric equations.  Let’s begin with the chain rule: 

 

𝑑𝑦

𝑑𝑡
 = 

𝑑𝑦

𝑑𝑥
 · 

𝑑𝑥

𝑑𝑡
 or 

𝑑𝑦

𝑑𝑥
 = 

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

 

 

If x = v0·cosθ·t then 
𝑑𝑥

𝑑𝑡
 = v0·cosθ 

 

If y = v0·sinθ·t – 
𝑔·𝑡2

2
 then 

𝑑𝑦

𝑑𝑡
 = v0·sinθ – g·t 

 

𝑑𝑦

𝑑𝑥
 = 

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

 = 
𝑣0·sinθ – g·t

𝑣0·cosθ
  or 

𝑑𝑦

𝑑𝑥
 = tanθ -  

 g·t

𝑣0·cosθ
 as a function of time 

 

 

 

 



We can also replace t with 
𝑥

𝑣0·cosθ
 from earlier to get  

 
𝑑𝑦

𝑑𝑥
 = tanθ - 

𝑔·𝑥

𝑣0
2· 𝑐𝑜𝑠2𝜃

  as we found before 

 

Incidentally, it’s a good habit, once equations are derived, to play with various values.  Do the 

equations make sense when t = 0?  Do they make sense where 
𝑑𝑦

𝑑𝑥
 = 0?  Why is t in the numerator 

and cosθ in the denominator? 

 

 

 
 

Now suppose we want the arc length traveled by the cricket.  Let’s define ds to be an infinitely 

small piece of this arc length.  Then ds
2
 = dx

2
 + dy

2
 

 

By the chain rule, dy = 
𝑑𝑦

𝑑𝑥
·dx, so ds

2
 = dx

2
 + (

𝑑𝑦

𝑑𝑥
 ·dx)

2
 = [1 + (

𝑑𝑦

𝑑𝑥
)

2
] · dx

2
 

 

Taking the square root of both sides and integrating yields: 

 

Arc length = ∫ √1 +  (
𝑑𝑦

𝑑𝑥
)2 · dx 

 

By symmetry, we could also use 

 

Arc length = ∫ √1 +  (
𝑑𝑥

𝑑𝑦
)2 · dy 

 

If we use the first form for our cricket, we would have 

 

Arc length = ∫ √1 +  (𝑡𝑎𝑛𝜃 − 
𝑔·𝑥

𝑣0
2· 𝑐𝑜𝑠2𝜃

)2 · dx 

 

where the boundaries for the full flight would be x = 0 to x = 
𝑣0

2·sin (2𝜃)

𝑔
 (from the range equation) 

 

That is not a particularly pleasant integral, so let’s try using parametric equations: 

 

If we remember 
𝑑𝑦

 𝑑𝑥
 = 

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

 then arc length = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)2 · dx becomes: 



Arc length = ∫ √1 + (
𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

)2 ·
𝑑𝑥

𝑑𝑡
· dt or  arc length = ∫ √(

𝑑𝑥

𝑑𝑡
)2  +  (

𝑑𝑦

𝑑𝑡
)2 · dt 

 

For our cricket, arc length = ∫ √(𝑣0 · cosθ)2  +  (𝑣0 · sinθ –  g · t)2 · dt 

 

where the boundaries for the full flight are t = 0 and t = 
2𝑣0𝑠𝑖𝑛𝜃

𝑔
 

 

This is still a complex integral and it takes some work, but the solution is: 

 

Arc length = 
𝑣0

2𝑐𝑜𝑠2𝜃

2𝑔
 · [ 2sec(θ)·tan(θ) + ln|

1+sin (𝜃)

1−sin (𝜃)
| ] 

 

 

Lastly, what is the area under the arc jumped by the cricket? 

 

 

We could simply integrate y = x·tanθ - 
𝑔·𝑥2

2·𝑣0
2· 𝑐𝑜𝑠2𝜃

 between the boundaries of x = 0 and  

x = 
2𝑣0

2·sin(𝜃)cos (𝜃)

𝑔
 

 

This would be: 

 

Area = ∫ x · tanθ −  
𝑔·𝑥2

2·𝑣0
2· 𝑐𝑜𝑠2𝜃

 ·dx = 
𝑥2

2
·tanθ - 

𝑔·𝑥3

6·𝑣0
2· 𝑐𝑜𝑠2𝜃

 

 

And with the boundaries entered:  Area = 
2𝑣0

4𝑠𝑖𝑛3𝜃·𝑐𝑜𝑠𝜃

3𝑔2  

 

What would this look like using parametric equations? 

 

Area = ∫ 𝑦(𝑥) · 𝑑𝑥
𝑥𝑓

𝑥𝑖
 = ∫ 𝑦(𝑡) · (

𝑑𝑥

𝑑𝑡
) · dt

𝑡𝑓

𝑡𝑖
 by using substitution for definite integrals 

 

For our cricket, y(t) = v0·sinθ·t – 
𝑔·𝑡2

2
  and  

𝑑𝑥

𝑑𝑡
 = v0·cosθ 

 

With the boundaries of t = 0 and t = 
2𝑣0𝑠𝑖𝑛𝜃

𝑔
 

 

Area = ∫  (𝑣0 · sinθ · t – 
𝑔·𝑡2

2
)  · (𝑣0 · cosθ) · dt

2𝑣0𝑠𝑖𝑛𝜃

𝑔

0
 

 

Area = 
2𝑣0

4𝑠𝑖𝑛3𝜃·𝑐𝑜𝑠𝜃

3𝑔2  as we found before 


