Parametric Equations

Suppose a cricket jumps off of the ground with an initial velocity vy at an angle 6. If we take his
initial position as the origin, his horizontal and vertical positions follow the equations:

X = Vg-C0S0-t

42
y = Vo-sing t— £

These are called parametric equations, with time being the parameter upon which the positions
depend.

If we had numeric values for the initial velocity and angle, it would be easy to make a chart of
the motion. Supposing Vo = 2m/s and 6 = 30°.

x =173t
y=t—4.91
Time (s) X (m) y (m)

0.0 0 0
0.05 0.087 0.038
0.10 0.173 0.051
0.15 0.260 0.040
0.20 0.346 0.004

The graph of which is a simple parabola.
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We can also eliminate the parameter through algebraic substitution:

X = Vp-CosO-t SO t=—=

vg-cos0O
_ L. git? — \/..cing. 9 X )2
Y=Vg sinf-t > SO Yy = Vo-sin@ (vo-cose) 2 (vo-cose)
g-x?

y =x-tanf - which is exactly the parabola graphed above

2-v2- cos?6

So the question arises, if we can extract the parameter and simply have y as a function of x, what
is the value of parametric equations in the first place? There are several answers:

1. It is not always possible to extract the parameter from simultaneous equations. Often, even
when possible, the result is uninformatively complex.

2. In many physical situations, we would like to know how the positions depend upon the
parameter. For the cricket, the parametric equations tell us where he is at any given time.

3. The parametric equations provide a direction for the curve. In our example, the cricket was
clearly jumping from left to right, but extracting time from the equations and writing y as a
function of x removed this information.

We can see those advantages with another example, a car driving around in circle, counter-
clockwise. Suppose the speed is a constant v, the radius of the track is R, the origin is at the
center of the track, and the car has the position shown at time zero. The parametric equations for
the car’s horizontal and vertical positions are then:

X = R-cos(Z - t)

y=Rsin( - )



We can extract the parameter of time as follows:

x? +y? = R%.cos? (% - t) + R%sin? (% . t) = R? or just X2 + y* = R

But, again, this Cartesian version has the following disadvantages:

1. x* + y* = R%is not a function, so cannot be written in simple functional notation
2. X%+ y* = R% does not tell us where the car is at any given time

3. x? + y* = R%*does not tell us that the car is moving counter-clockwise

What calculus can be applied to parametric equations?

Suppose we wanted the instantaneous trajectory of the cricket at any time or position, that is, we
want to find the tangent to the spatial curve, or Z—i.

"2
One way is to simply differentiate the equation y = x-tanf - ﬁ and find
2.
v _ ___9x
dx tanb v2- cos?8

Another is to use the parametric equations. Let’s begin with the chain rule:

dy
dy _dy dx ay _ ac
2t az ac Of —  dx
dt dx dt dx hadid

dt

dx _
If X = vp-cosO-t then e Vp-C0SH
. -t2 d .
Ify:vo-sme-t—gT then d—f:vo-sme—g-t
ay 2 d
ar v(-sinf - g-t y . .

2 -de TR or  ——=tand- as a function of time
dx == v(-c0sO dx v(-cosO



P

We can also replace t with from earlier to get

Vg-cosO

dy gx
_— = n -
dx tang v2- cos20

as we found before

Incidentally, it’s a good habit, once equations are derived, to play with various values. Do the
equations make sense when t = 0? Do they make sense where Z—z =0? Why is t in the numerator
and cos6 in the denominator?

arc length

Now suppose we want the arc length traveled by the cricket. Let’s define ds to be an infinitely
small piece of this arc length. Then ds? = dx® + dy?

i -, 2 = b + (2 . dx)? = N2 . 4y
By the chain rule, dy = ™ dx, so ds® = dx“ + (dx dx) =[1+ (dx) ] - dx
Taking the square root of both sides and integrating yields:
Arclength=[ |1 + (Z—z)z - dx
By symmetry, we could also use
dx
Arclength=[ [1 + (E)2 - dy

If we use the first form for our cricket, we would have

Arc length = le + (tanf — =2 . dx

v2- cos?0

v3-sin(26)

where the boundaries for the full flight would be x =0to x = (from the range equation)

That is not a particularly pleasant integral, so let’s try using parametric equations:

dy
dy _ Gt — dy .
If we remember G 9% then arc length= [ |1 + (—dx)2 - dx becomes:

dat



dy
dtN2 4 d d
Arc length = | ’1 + (%)2 ==-dt or  arclength = f\/(d—’;)z + (d—3t’)2 - dt

For our cricket, arc length = f\/(vo -cosB)? + (v -sinb - g-t)? - dt

where the boundaries for the full flight are t = 0 and t = 2225

This is still a complex integral and it takes some work, but the solution is:

v2cos?0
2g

1+sin(9)| ]

Arc length = 1-sin(6)

- [ 2sec(0)-tan(6) + In|

Lastly, what is the area under the arc jumped by the cricket?

x2 .
We could simply integrate y = x-tan0 - ﬁ between the boundaries of x = 0 and
2.
X = 2v2-sin(8)cos(8)
g

This would be:
Area= [x-tanf — —25  .dx = tang - —IX

2-v2- cos20 2 63 cos26

4030,
And with the boundaries entered: ~ Area = W
What would this look like using parametric equations?

Area = f;ify(x) dx = fttify(t) : (%) -dt by using substitution for definite integrals
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For our cricket, y(t) = Vo-sind-t — % and % = Vg-C0S0

2vysinf

With the boundariesof t=0and t =

2vgsiné

2vosing 2
Area= [ ¢ (vo-sine-t—%) - (vg - cosB) - dt

2v§sin30-cosé
392

Area = as we found before



