
Tangent Planes and Linear Approximations 
 

Take the two traces we used for the elliptic paraboloid in the last notes and notice the point 

where they cross: 

 
The trace along the y-axis meets this point at a tangent line parallel to the y-z plane.  The trace 

along the x-axis meets this point at a tangent line parallel to the x-z plane. 

 

The plane that contains these two tangent lines is the planar approximation of the curve at the 

point where the traces intersect. 

 

Here is another diagram to represent the idea: 

 
 



We saw in the notes on planes that one way of defining a plane is to use the scalar equation: 

 

A·(x - x0) + B·(y - y0) + C·(z - z0) = 0  

 

which we can rearrange and drop one coefficient if we define a = - 
𝐴

𝐶
 and b = - 

𝐵

𝐶
 so that: 

z – z0 = a(x – x0) + b(y – y0) 

 

This tangent plane intersects the plane of y = y0  (or y – y0 = 0), and this intersection of two 

planes is the tangent line parallel to the y-z plane, thus having the equation: 

 

z – z0 = a(x – x0) 

 

This line has a slope of a which is, conceptually, a change along the z-axis divided by a change 

along the x-axis, holding the y-value constant.  And we have defined this as 
𝜕𝑧

𝜕𝑥
. 

 

Likewise, the tangent intersects the plane of x = x0  (or x – x0 = 0), and this intersection of two 

planes is the tangent line parallel to the x-z plane, thus having the equation: 

 

z – z0 = b(y – y0) 

 

This line a slope of b which is, conceptually, a change along the z-axis divided by a change along 

the y-axis, holding the x-value constant.  And we have defined this as 
𝜕𝑧

𝜕𝑦
. 

The important, end result is this: 

The equation for a tangent plane of a surface, z = f(x,y) at a point, P = (x0, y0, z0) is: 

 

z – z0 = 
𝜕𝑧

𝜕𝑥
·(x – x0) + 

𝜕𝑧

𝜕𝑦
·(y – y0) 

 

For an example, let’s use our elliptic paraboloid of 
𝑥2

9
 + 

𝑦2

4
 = z. 

 
What is the equation of the tangent plane at point (3, 2, 2)? 

 
𝜕𝑧

𝜕𝑥
 = 

2

9
x  at x = 3, y = 2  

𝜕𝑧

𝜕𝑥
 = 

2

3
 

 
𝜕𝑧

𝜕𝑦
 = 

1

2
y  at x = 3, y = 2  

𝜕𝑧

𝜕𝑦
 = 1 

 

z – z0 = 
𝜕𝑧

𝜕𝑥
·(x – x0) + 

𝜕𝑧

𝜕𝑦
·(y – y0) becomes z – 2 = 

2

3
(x – 3) + 1(y – 2) or 

 

z = 
2

3
x + y – 2 which is also called the linearization of the function, L(x,y). 



As mentioned, the tangent plane is an approximation of the curve at the point where the two are 

in contact, thus it is called the linear approximation or tangent plane approximation of the curve 

f at point P. 

 

To demonstrate this point, let’s compare our two functions: 

 

Elliptic paraboloid: 
𝑥2

9
 + 

𝑦2

4
 = z 

 

Tangent plane approximation: z = 
2

3
x + y – 2 

 

At the point (3, 2), they produce the same value for z, as we expect. 

 

At the point (3.1, 2.1), the curve equation produces z = 2.17, the plane equation produces 2.16̅, 

so a fairly good approximation. 

 

At the point (4, 3), the curve equation produces z = 4.03, the plane equation produces 3.67, a 

fairly poor approximation. 

 

It is, of course, important that the curve be continuous at the point in question so that the 

functions are differentiable. 

 

 

In single-variable calculus, we had 
𝑑𝑦

𝑑𝑥
 = f’’(x) or dy = f’(x)·dx 

 

In multivariable calculus, we simply extend this to: 

 

dz = 
𝜕𝑧

𝜕𝑥
(dx) + 

𝜕𝑧

𝜕𝑦
(dy) 

 

or, for any number of variables: 

 

dh = 
𝜕ℎ

𝜕𝑥
(dx) + 

𝜕ℎ

𝜕𝑦
(dy) + 

𝜕ℎ

𝜕𝑧
(dz) + … where dh is known as the differential of h. 

 

As an example, suppose a cylindrical can has a height of 10cm and a radius of 5cm.  Estimate the 

uncertainty in volume if each measurement has an uncertainty of ±0.10cm. 

 

V = (h)(π·R
2
) 

 

dV = 
𝜕𝑉

𝜕ℎ
(dh) + 

𝜕𝑉

𝜕𝑅
(dR) 

 

dV = (πR
2
)(dh) + (2hπR)(dR) 

 

dV = (π·5
2
)(0.20) + (2·10·π·5)(0.20) ≈ 78.5cm

3
 


