
Applications of double integrals, surface area 
 

Suppose we have a flat disk of some shape and the density of the disk is a function of the 

individual positions of the disk, that is, σ = 
𝑑𝑚

𝑑𝐴
 = f(x,y).  We can find the total mass of the disk by 

multiplying the density of each infinitely small piece of area times the density at that particular 

location, dm = σ·dA. 

 

This makes the total mass of the disk: 

 

m = ∬ σ(𝑥, 𝑦) · 𝑑𝐴  or  m = ∬ σ(𝑥, 𝑦) · 𝑑𝑥 · 𝑑𝑦 

 

This is very similar to what we have done before, finding volumes in space of shapes where the 

height of the shape along the z-axis depends upon the position in the x-y plane.  Here, we are 

simply replacing the concept of height with the concept of density. 

 

Likewise in electrostatics, if we define charge density as charge per area: σ =  
𝑑𝑄

𝑑𝐴
 = f(x,y), then 

the total charge of the system is similarly: 

 

Q = ∬ σ(𝑥, 𝑦) · 𝑑𝐴  or  Q = ∬ σ(𝑥, 𝑦) · 𝑑𝑥 · 𝑑𝑦 

 

For example, suppose we have a triangle with vertices of (0,1), (1,1) and (1,0) where the charge 

density is a function of x and y such that σ(x,y) = xy.  What is the total charge? 

 

Q = ∫ ∫ (x · y)
1

1−𝑥

1

0
· 𝑑𝑦 · 𝑑𝑥 

 

Note the boundaries of the inner integral arise because we want to use vertical strips of area of 

the triangle and not the entire square.  The outer integral is then the sum of all of these vertical 

strips. 

 

The inner integral produces 
𝑥

2
 - 

𝑥

2
(1-x)

2
 = x

2
 - 

𝑥3

2
 which makes the outer integral 

𝑥3

3
 - 

𝑥4

8
 with 

boundaries of 0 and 1, producing a total charge of 
5

24
. 

 

 

 

 

 



A third application in physics utilizes the concept of center-of-mass.  In the x-dimension, this is 

defined at: 

 

xcm = 
∫ 𝑥·𝑑𝑚

∫ 𝑑𝑚
 which is, conceptually, the average position of a system, weighted by mass 

 

 

ycm = 
∫ 𝑦·𝑑𝑚

∫ 𝑑𝑚
 is the similar equation in the y-dimension 

 

If the mass density of the system varies with position, we must then write dm = σ(x,y)·dA and 

use this in our integrals. 

 

For example, let’s find the center of mass for a triangle with vertices of (0,0), (0,2), and (1,0) 

which has a density function of σ = 1 + 3x + y. 

 
First, let’s find the total mass of the triangle which will serve as the denominator for each center 

of mass coordinate: 

 

M = ∫ 𝑑𝑚 = ∫ ∫ (1 +  3x +  y) · dy · dx
2−2𝑥

0

1

0
 

 

The inner integral is y + 3xy + 
1

2
y

2
 which has bounds of 0 and 2-2x, so it becomes 4 – 4x

2
. 

Integrating that with respect to x becomes 4x - 
4

3
x

3
 with bounds of 0 and 1 equals 

8

3
. 

 

For the center of mass in the x-dimension, the numerator would be: 

 

∫ 𝑥 · 𝑑𝑚 = ∫ ∫ 𝑥 · (1 +  3x +  y) · dy · dx
2−2𝑥

0

1

0
 

 

The inner integral is xy + 3x
2
y + 

1

2
xy

2
 with bounds of 0 and 2-2x, which becomes 4x – 4x

3
.  

Integrating that with respect to x becomes 2x
2
 – x

4
 with bounds of 0 and 1 equals 1. 

 

With a numerator of 1 and a denominator of 
8

3
, the center of mass in the x-dimension is 

3

8
.  Follow 

a similar process for the y-dimension and you will find a coordinate of 
11

16
. 

 



 

Another useful equation in physical mechanics is rotational inertia, a measure of how difficult it 

is to give an object angular acceleration around a defined axis.  From the fundamental definition 

of I = m·R
2
, we can write: 

 

dI = R
2
·dm = R

2
·σ(x,y)·dA 

 

If we want the rotational inertia around the x-axis, then R = y and the above equation becomes: 

 

Ix = ∬ 𝑦2 · σ(x,y)·dy·dx 

 

Rotational inertia around the y-axis would be: 

 

Iy = ∬ 𝑥2 · σ(x,y)·dy·dx 

 

And rotational inertia around the origin would be: 

 

I = ∬(𝑥2 + 𝑦2) · σ(x,y)·dy·dx 

 

For example, let’s find all three rotational inertias for the curve between y = 1 – x
2
 and y = 0 

which has a density function of σ(x,y) = ky. 

 

Ix = ∬ 𝑦2 · σ(x,y)·dy·dx = ∫ ∫ 𝑦2 · 𝑘𝑦 · 𝑑𝑦 · 𝑑𝑥
1− 𝑥2

0

1

−1
 

 

The inner integral becomes 
1

4
ky

4
 with bounds of 0 and 1 – x

2
 which is 

1

4
k(1 – x

2
)
4
. 

 

We expand this and integrate with respect to x between bounds of -1 and 1 to achieve 
64

315
k. 

 

Iy = ∬ 𝑥2 · σ(x,y)·dy·dx = ∫ ∫ 𝑥2 · 𝑘𝑦 · 𝑑𝑦 · 𝑑𝑥
1− 𝑥2

0

1

−1
 

 

The inner integral becomes kx
2
y

2
 with bounds of 0 and 1 – x

2
 which is kx

2
(1 – x

2
)
2
. 

 

Expanding this and integrating with respect to x between -1 and 1 becomes 
8

105
k. 

 

Around the origin, I = ∬(𝑥2 + 𝑦2) · σ(x,y)·dy·dx = ∫ ∫ (𝑥2 +  𝑦2) · 𝑘𝑦 · 𝑑𝑦 · 𝑑𝑥
1− 𝑥2

0

1

−1
 

 

The inner integral becomes 
1

2
kx

2
y

2
 + 

1

4
ky

4
 with bounds of 0 and 1 – x

2
 which is 

1

2
kx

2
(1 – x

2
)
2
 + 

1

4
k(1 – x

2
)
4
. 

 

Expanding this and integrating with respect to x between -1 and 1 produces 
88

315
k. 

 

 



We can easily check this because dI = dm·R
2
 = dm·(x

2
 + y

2
) = dm·x

2
 + dm·y

2
 

 

Therefore, Io = Iy + Ix, which in our problem is: 
88

315
k = 

8

105
k + 

64

315
k. 

 

Our fifth application of double integrals involves probability functions.  This is very useful in 

quantum mechanics where a certain particle may exist in a region of space, but where in that 

region is probabilistic. 

 

For example, a particle may exist somewhere in the x-y plane, but the likelihood of existing at 

some position depends upon the x and y coordinates.  We can say the probability density,  

σ = f(x,y).  But the particle must exist somewhere, so the total probability of existence is one. 

 

Therefore, ∫ ∫ 𝜎(𝑥, 𝑦) · 𝑑𝑦 · 𝑑𝑥
+∞

−∞

+∞

−∞
 = 1 

 

Let’s suppose the particle is bounded somewhere in the region 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10 and the 

probability density is C(x + 2y).  What is the probability that x ≤ 7 and y ≥ 2 ? 

 

∫ ∫ C(x +  2y) · 𝑑𝑦 · 𝑑𝑥
+10

0

+10

0
 = 1 

 

 

∫ (10𝑥 + 100) · 𝑑𝑥
+10

0
 = 

1

𝐶
 

 

500 + 1000 = 
1

𝐶
 or  C = 

1

1500
 

 

Then, ∫ ∫
1

1500
(x +  2y) · 𝑑𝑦 · 𝑑𝑥

10

2

7

0
 = P 

 

P = 
1

1500
∫ (8𝑥 + 96) · 𝑑𝑥

7

0
 = 

868

1500
 ≈ 58% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lastly, let’s use double integrals to find the surface area of some surface above the x-y plane. 

 
 

The area of the parallelogram which approximates the area of the curve underneath, as we saw in 

the notes on cross-products, is the cross product of the x and y vectors which originate at point P. 

If we let fx be the slope of the surface along the x-dimension at P and fy be the slope of the 

surface along the y-dimension at P, then: 

 

 a x b = 

𝒊 𝒋 𝒌
𝛥𝑥 0 𝑓𝑥𝛥𝑥
0 𝛥𝑦 𝑓𝑦𝛥𝑦

  =  Δx·Δy·k - fx·Δx·Δy·i – fy·Δx·Δy·j = ΔA(k - fx·i - fy·k) 

 

The magnitude of this quantity is then √𝑓𝑥
2 +  𝑓𝑦

2 + 1·ΔA 

 

As the parallelogram shrinks to infinitely small, we have: 

 

d(Area) = √𝑓𝑥
2 +  𝑓𝑦

2 + 1·dA = √𝑓𝑥
2 +  𝑓𝑦

2 + 1·dy·dx 

 

And the area of the surface itself is then: 

 

A = ∬ √𝑓𝑥
2 +  𝑓𝑦

2 + 1 · dy · dx 

 

Written in the form of partial derivatives, this is: 

 

A = ∬ √(
𝜕𝑧

𝜕𝑥
)2 + (

𝜕𝑧

𝜕𝑦
)2 + 1 · dy · dx 

 

 

 

 

 

 



For an example, let’s take a triangle in the x-y plane with vertices of (0,0), (1,1) and (1,0).  

Above this triangle is a surface with a function, z = x
2
 + 2y.  What is the surface area of this 

surface? 

 

A = ∬ √(
𝜕𝑧

𝜕𝑥
)2 + (

𝜕𝑧

𝜕𝑦
)2 + 1 · dy · dx 

 

A = ∫ ∫ √(2𝑥)2 +  (2)2 + 1
𝑥

0

1

0
·dy·dx 

 

A = ∫ (𝑥 · √4𝑥2 + 5)
1

0
·dx 

 

A = 
1

12
(4·1

2
 + 5)

3/2
 – 

1

12
(4·0

2
 + 5)

3/2
 = 

27−5√5

12
 

 


