
Conic Sections 

 
A parabola is a curve defined so that every point along the curve is the same distance (R) from 

the focus and a line beneath the parabola called the directrix. 

 
The lowest point of the curve, vertically beneath the focus, is the vertex of the parabola.  For 

simplicity, we can set the vertex to have coordinates of (0,0).  If the focus has coordinates of  

(0, d), then the directrix is a line with the equation, y = -d.  We can see from the diagram that the 

blue line is equal in length to d + y.  The red line is the hypotenuse of a triangle where the base 

has a length x and a height (y – d).  The red line length is then √𝑥2 + (𝑦 − 𝑑)2.  If we set the red 

line length equal to the blue line length, as is true by definition for a parabola, we have: 

 

y + d = √𝑥2 + (𝑦 − 𝑑)2 which reduces to  x
2
 = 4yd 

 

If we define a = 
1

4𝑑
 we have a simple equation for a parabola y = a·x

2
 

 

when the parabola is aligned with the y-axis. 

 

 

An ellipse is a curve defined so that every point along the curve is a distance from two points 

(called the foci of the ellipse) and the sum of the two distances is constant. 

 
If we set the center of the ellipse at (0,0) between the two foci, then the foci will have 

coordinates of (-c, 0) and (+c, 0) and the vertices along the major axis will have coordinates  



(-a, 0) and (+a, 0).  We can see that when P is at the right vertex, d1 = c + a and d2 = a – c.  

Therefore, d1 + d2 will always equal 2a. 

 

Take point P in the diagram above at coordinates (x, y) and we see d1 = √(c +  x)2  +  𝑦2  and  

d2 = √(x −  c)2  +  𝑦2 .  If d1 + d2 = 2a, then we have: 

 

√(c +  x)2  +  𝑦2  + √(x −  c)2  +  𝑦2  = 2a  which can be simplified to 

 
𝑥2

𝑎2
 + 

𝑦2

𝑏2
 = 1 where b

2
 = a

2
 – c

2
 and b is the y-coordinate when x = 0 and 

 

a > c, the vertices are outside the foci when the ellipse is aligned with the x-axis. 

 

 

Last of the three, a hyperbola is a curve defined so that every point along the curve is a distance 

from two points (the foci) and the difference between the two distances is constant. 

 
If we center the hyperbola at the origin, the foci are again at (-c, 0) and (+c, 0).  The diagram 

above shows d1 = √(𝑐 + 𝑥)2 +  𝑦2 and d2 = √(𝑥 − 𝑐)2 +  𝑦2 

 

√(c +  x)2  +  𝑦2  + √(x −  c)2  +  𝑦2  = 2a  which can be simplified to 

 
𝑥2

𝑎2
 + 

𝑦2

𝑏2
 = 1 where b

2
 = a

2
 – c

2
 and b is the y-coordinate when x = 0 

 

This looks like the same equation as the ellipse, but we write it as 

 
𝑥2

𝑎2
 - 

𝑦2

𝑏2
 = 1 where b

2
 = c

2
 – a

2
 because c > a, the foci are outside the vertices  

 

and the hyperbola is aligned with the x-axis. 



 

And if we rearrange 
𝑥2

𝑎2
 - 

𝑦2

𝑏2
 = 1 for y, we get y = ±

𝑏

𝑎
·x·√1 −  

𝑎2

𝑥2
 

 

As x approaches infinity, 
𝑦

𝑥
 = ±

𝑏

𝑎
 which are the slant asymptotes 

 

 

 

Having written the conic section curves in Cartesian coordinates, we will now see all three forms 

can be written with a single equation in polar coordinates. 

 

That equation is as follows: 

 

R = 
𝑒·𝑑

1 ±𝑒·𝑠𝑖𝑛𝜃
 

 
where d is the distance between the focus and the directrix and e is the eccentricity of the curve, 

which can be greater than, less than, or equal to one.  If the directrix is right or above the focus, 

use the positive sign in the denominator, if left or below, use the negative sign.  And if the conic 

section is aligned with the x-axis, replace sin with cos. 

 

Let’s take the case where e = 1. 

 

R = 
𝑑

1− 𝑠𝑖𝑛𝜃
   d = R – Rsinθ  or  d + Rsinθ = R 

 

 



As you see in the diagram above, that is exactly the condition we need for a parabola: the 

distance between any point on the curve and the focus (R) is equal to the distance between that 

same point and the directrix (d + Rsinθ). 

 

We could have chosen the difference in the denominator; that is simply the same parabola with 

the directrix above the focus.  Also, recall what the R and θ represent in polar coordinates.  R 

indicates the distance of any point along the curve from the origin and θ is the corresponding 

angle as you travel from the origin to that point. 

 

 For an ellipse, we can again begin with R = 
𝑒·𝑑

1− 𝑒·𝑠𝑖𝑛𝜃
 or R = e(d + sinθ) 

 

 

Squaring both sides and converting to Cartesian coordinates yields: 

 

x
2
 + y

2
 = e

2
(d + y)

2
 and then a fair amount of algebra converts this into: 

 

(𝑦 −  
𝑒2𝑑

1 −  𝑒2
)2 +  

𝑥2

1 −  𝑒2
=  

𝑒2𝑑2

(1 −  𝑒2)2
 

 

When e < 1, which is true for an ellipse, the second term is positive and we have the Cartesian 

form of an ellipse shifted upward a distance h: 

 
(𝑦−ℎ)2

𝑏2  + 
𝑥2

𝑎2 = 1 

 
Dividing the equation  

(𝑦 −  
𝑒2𝑑

1− 𝑒2)2 +  
𝑥2

1− 𝑒2 =  
𝑒2𝑑2

(1− 𝑒2)2 by 
𝑒2𝑑2

(1− 𝑒2)2  shows 

 

h = 
𝑒2𝑑

1− 𝑒2
 a

2
 = 

𝑒2𝑑2

1− 𝑒2
 b

2
 = 

𝑒2𝑑2

(1− 𝑒2)2
 

 

We can also use the equation for an ellipse a
2
 = b

2
 – c

2
 and solve c = 

𝑒2𝑑

1− 𝑒2
 

 

This shows the eccentricity e = 
𝑐

𝑎
 = 

√𝑏2− 𝑎2

𝑎
 and gives it some physical meaning.  c is the distance 

from the center of the ellipse to a focus.  a is the distance from the center of the ellipse to the 

farther side (a distance called the semi-major axis).   

 

When a = b, the eccentricity is zero and the ellipse is a circle.  c is zero because the lone focus is 

at the center of the circle.  As a becomes smaller and smaller relative to c, the ellipse becomes 

narrower and “more eccentric”. 

 

 



We can also rearrange a
2
 = 

𝑒2𝑑2

1+ 𝑒2
 into ed = a(1 – e

2
) so that the equation for an ellipse is: 

 

R = 
a(1 – 𝑒2) 

1+ 𝑒·𝑠𝑖𝑛𝜃
 

 

 

Going back to an intermediate step: 

 

(𝑦 −  
𝑒2𝑑

1 −  𝑒2
)2 +  

𝑥2

1 −  𝑒2
=  

𝑒2𝑑2

(1 −  𝑒2)2
 

 

For a hyperbola, e > 1, which means the second term above is negative, and the equation takes 

the correct form of: 

 

(𝑦−ℎ)2

𝑏2  - 
𝑥2

𝑎2 = 1 

 

 
To give R = 

𝑒·𝑑

1 ±𝑒·𝑠𝑖𝑛𝜃
 a little more meaning, let’s look at it applied to a parabola. 

 

 
The directrix is below the focus, so we’ll use the difference in the denominator.  For a parabola, 

e = 1, so we can simplify the equation to R = 
𝑑

1−𝑠𝑖𝑛𝜃
, noting that we are taking the focus as the 

origin. 

 

When θ = 0, R = d and we travel from the focus to the right and plot a point at a distance d. 

When θ = 
𝜋

2
, R = ∞ as it should be, because R increases as θ goes from 0 to 

𝜋

2
. 

 

Going from 
𝜋

2
 to π, the sin function is symmetric to what it is from 0 to 

𝜋

2
 and so the left side of 

the parabola above the focus is similar to the right side. 

 



From π to 
3𝜋

2
 the sin function is negative and increasing, giving us a larger and larger 

denominator, making the R value smaller and smaller.  At 
3𝜋

2
, R is the shortest it will be, at 

𝑑

2
, 

which is should be for a parabola, where the vertex is directly between the focus and directrix. 

 

Then again, from 
3𝜋

2
 to 2π, the symmetry of the sin function produces the symmetry of the 

parabola. 

 

For an ellipse, e < 1 and that prevents the denominator of 1 – 1 = 0 when θ = 
𝜋

2
 and avoids the R 

value of infinity. 

 

For a hyperbola, e > 1 and the infinite R arises even before θ = 
𝜋

2
. 

 

 


