
3D Coordinate Systems and Vectors 

 

 
Above is a standard diagram of the three coordinate axes centered at the origin and which 

contains three coordinate planes, the xz plane (consisting of all points where y = 0), the xy plane 

(where z = 0), and the yz plane (where x = 0).  These three planes divide space into eight octants. 

 

If we place a point, P, in space with (x, y, z) coordinates of (3, 4, 5), it would look like this: 

 
 

 



We can imagine point P sitting on one corner of a box with the origin at the opposite corner:   

 
Let the red line have a length Px, the blue line have a length Py, and the green line have a length 

Pz. 

 

From the Pythagorean theorem, the yellow line must have a length √𝑃𝑥
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2. 

 

The distance between the origin and P must then be √𝑃𝑧
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In general, the distance between any two points in space is: 

 

d = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 +  (𝑧2 − 𝑧1)2  
 

If we imagine all points in space which satisfy the equation x
2
 + y

2
 + z

2
 = R

2
, they would all be 

points a distance R from the origin, making a spherical surface with radius R centered at the 

origin.   

 

In one dimension, an equation (like x
2
 = 5) is a point. 

In two dimensions, an equation (like x
2
 + y

2
 = 5) is a curve. 

In three dimensions, an equation (like x
2
 + y

2
 + z

2
 = 5) is a surface. 

 

To shift the sphere right, up, or out of the page, we could generalize to the equation: 

 

(x – h)
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 = R

2
 

 

 

A vector can be defined as a quantity with magnitude and direction.  It is generally represented 

with an arrow where the length of the arrow is proportional to the magnitude of the vector. 



 
Vectors can be moved and (as long as they maintain their length and direction), they maintain 

their identity. 

 

To add vectors, simply align them “tail-to-tip” and draw the resultant summation: 

 
You can also draw a parallelogram so that the vector sum crosses the parallelogram from corner 

to corner, showing that A + B = B + A: 

 
 

 

Often it is useful to find the components of a vector, most commonly the components parallel to 

the principle axes. 

 



In the diagram above, vector A can be written as (Ax, Ay) where 

 

Ax = |A|·cosθ 

Ay = |A|·sinθ 

 

Where |A| is the magnitude of the vector 

 

Vector addition can then be computed as: 

 

A + B = (Ax, Ay) + (Bx, By) = (Ax+Bx, Ay+By) 

 

This notation also makes clear the result of vector subtraction: 

 

A – B = (Ax, Ay) - (Bx, By) = (Ax - Bx, Ay - By) 

 

which is the same as 

 

A + (-B) = (Ax, Ay) + (-Bx, -By) = (Ax - Bx, Ay - By) 

 

Graphically, -B is the same as B, rotated 180º 

 
 

A scalar is a quantity with magnitude only.  A scalar (c) can be multiplied by a vector (A) to 

produce a second vector: 

 

cA = c·(Ax, Ay) = (cAx, cAy) 

 

The following is a general list of vector properties, assuming vectors A, B, and C and scalars c 

and d. 

 

1. A + B = B + A 

 

2. A + (B + C) = (A + B) + C 

 

3. A + 0 = A 

 

4. A + (-A) = 0 

 

5. c(A + B) = cA + cB 

 

6. (c + d)A = cA + dA 

 



7. (cd)A = c(dA) 

 

8. 1·A = A 

 

These are all very easy to prove using vector components. 

 

 

Lastly, we will define the unit vectors i, j, and k. 

 

i = (1, 0, 0) 

j = (0, 1, 0) 

k = (0, 0, 1) 

 

Thus, we can write a vector with unit vector notation.  Suppose A = (10, 6, -8). 

 

Using unit vectors, we can also write A = 10i + 6j – 8k. 

 

  


