
Equations of Lines and Planes 

 
Imagine a particle moving through three-dimensional space at some constant velocity, v.  At time 

zero it would have a position R0 and at some later time, t, it would have a position R.   

 
The motion of the particle forms a line of all points: R = R0 + v·t for all times -∞ < t < ∞ of 

which only a small segment above is shown in red. 

 

If we expand v into its components so that v = <vx, vy, vz>, then we have the parametric 

equations: 

 

x = x0 + vx·t 

y = y0 + vy·t 

z = z0 + vz·t 

 

For example, suppose R0 = (1, 2, 3) and v = <4, 5, 6>, then 

 

x = 1 + 4t 

y = 2 + 5t 

z = 3 + 6t 

 

At two seconds, the position would then be (9, 12, 15) and we could just as easily define the 

same line with 

 

x = 9 + 4t 

y = 12 + 5t 

z = 15 + 6t 

 

We would also have the same line in space if the particle was moving twice as fast, so that  

v = <8, 10, 12> and 

 

x = 1 + 8t 

y = 2 + 10t 

z = 3 + 12t 



Lastly, we can take the three equations of a line and solve for time so that: 

 

x = x0 + vx·t 

y = y0 + vy·t 

z = z0 + vz·t 

 

become 

 
𝑥− 𝑥0

𝑣𝑥
 = 

𝑦− 𝑦0

𝑣𝑦
 = 

𝑧− 𝑧0

𝑣𝑧
 

 

which are called the symmetric equations, where vx, vy, and vz are called the directional numbers 

of the line. 

 

 

A plane is a flat surface which can be defined with a point within the plane, P0 = (x0, y0, z0), and 

a normal vector, n, which is orthogonal, or perpendicular, to the plane. 

 

For a simple example, let’s take a plane including the point (5, 0, 0) which is parallel to the y-z 

plane. 

 
Even though it doesn’t really matter, we can use a convention that the normal vector points away 

from the y-z plane.   

 

If n = <1, 0, 0>, then the plane is defined by P = (5, 0, 0) and n = <1, 0, 0>. 

 

Of course, we can use any point on the plane, so this plane is defined just as well with: 

 

P = (5, 6, -10) and n = <1, 0, 0>. 

 

And it’s really only the direction of the normal vector that is important, so this plane is also 

equally defined with: 

 

P = (5, 0, 0) and n = <2, 0, 0>     or   P = (5, 6, -10) and n = <15, 0, 0> 



Let R – R0 be a line segment in a given plane between points P and P0.  If this line segment is in 

the plane and the normal vector, n, is perpendicular to the plane, then the dot product tells us 

that n • (R – R0) = 0 which is often written as n • R = n • R0 and called the vector equation of the 

plane. 

 
We can see it is true in the diagram above.  n • R equals |n| times the x-component of R and  

n • R0 equals |n| times the x-component of R0.  Those two x-components are equal so  

n • R = n • R0. 

 

If we expand the three vectors so that 

 

n = <a, b, c> 

R = <x, y, z> 

R0 = <x0, y0, z0> 

 

then we can use n • (R – R0) = 0 to see that 

 

<a, b, c> • <x - x0, y - y0, z - z0> = 0 

 

a·(x - x0) + b·(y - y0) + c·(z - z0) = 0 called the scalar equation of the plane 

 

or 

 

a·x + b·y + c·z + d = 0 if d = -(a·x0 + b·y0 + c·z0) 

 

and is called the linear equation of the plane 

 

 

Suppose we are given three points in space and we wish to find the plane that contains them. 

The points are: 

 

P = (1, 3, 2)  Q = (3, 1, 6)  R = (5, 2, 0) 

 



A plane is defined by a point within the plane and a normal vector.  We can use any of the three 

as a defining point, so we need to only determine the normal vector.  We also know from 

previous notes that the cross product between any two lines gives us a vector perpendicular to 

both.  So the cross product of lines 𝑃𝑄̅̅ ̅̅  and 𝑃𝑅̅̅ ̅̅  will give us the normal vector we need. 

 

𝑃𝑄̅̅ ̅̅  = Q – P = (4, -2, 2) and 𝑃𝑅̅̅ ̅̅  = R – P = (-6, 1, 2) 

 

𝑃𝑄̅̅ ̅̅  x 𝑃𝑅̅̅ ̅̅  = 
𝑖 𝑗 𝑘
4 −2 2

−6 1 2
 = -6i – 20j – 8k 

 

So the plane can be defined with point P = (1, 3, 2) and normal vector n = -6i – 20j – 8k 

 

Or in the form  a·(x - x0) + b·(y - y0) + c·(z - z0) = 0  we have 

 

-6(x – 1) + -20(y – 3) + -8(z – 2) = 0 

 

6x + 20y + 8z – 72 = 0 

 

 

Two planes are parallel if their normal vectors are parallel (so that n1 ∝ n2).  If not, the two 

planes will cross at a line and form an acute angle between themselves.  The angle and the line 

can be determined as follows: 

 

Suppose the two planes have the linear equations x + y + z = 1 and x – 2y + 3z = 1. 

 

The angle between the planes is the same as the angle between their normal vectors, so we can 

use the dot product: 

 

n1•n2 = |n1||n2|cosθ and solve for θ 

 

<1, 1, 1>•<1, -2, 3> = √12 +  12 +  12·√12 + −22 +  32·cosθ 

 

1 - 2 + 3 = √3·√14·cosθ 

 

θ  = 72º 

 

To determine the line at which they intersect, we first need to find at least one point which sits on 

that line. 

 

Because neither plane is parallel to the x-y plane, the line they form when they cross must also 

cross the x-y plane, where z = 0.  Therefore, if we use that point,  

 

x + y = 1 and  x – 2y = 1 so x = 1 and y = 0 

 



Also, if the line of intersections lies in both planes, then it must be perpendicular to both normal 

vectors.  This is also true, as we saw before, of the cross product of the two normal vectors.  So  

 

n1 x n2 = 
𝑖 𝑗 𝑘
1 1 1
1 −2 3

 = 5i – 2j – 3k 

 

 

The equation of the line of intersection can then be written in the form R = R0 + v·t 

 

R = (1, 0, 0) + <5, -2, -3>·t 

 

 

Lastly, how can we determine the distance, D, between a point in space, P1 = (x1, y1, z1), and a 

plane of the equation a·x + b·y  + c·z + d = 0? 

 

 
 

Let b serve as a vector from P0 to P1 so that b = (x1 – x0,  y1 – y0,  z1 – z0).   D is then the scalar 

component of b along n (as was defined in the previous notes): 

 

D = 
|𝒏•𝒃|

|𝒏|
 = 

𝑎(𝑥1− 𝑥0)+ 𝑏(𝑦1− 𝑦0)+ 𝑐(𝑧1− 𝑧0)

√𝑎2+𝑏2+𝑐2
  = 

(𝑎𝑥1+𝑏𝑦1+𝑐𝑧1)− (𝑎𝑥0+𝑏𝑦0+𝑐𝑧0)

√𝑎2+𝑏2+𝑐2
  

 

D = 
|𝑎·𝑥1+ 𝑏·𝑦1+ 𝑐·𝑧1+ 𝑑|

√𝑎2+𝑏2+𝑐2
 

 

 


