Problem Set 1

1. For $x = t^2$ and $y = t^3$ - 4t for $-3 \le t \le 3$, sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction of the curve as *t* increases.

2. For x = t - 1 and $y = t^3 + 1$ for $-2 \le t \le 2$, sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction of the curve as *t* increases. Then eliminate the parameter to find the Cartesian equation of the curve.

3. For $x = \frac{1}{2}\cos\theta$ and $y = 2\sin\theta$ for $0 \le t \le \pi$, eliminate the parameter to find the Cartesian equation of the curve. Then sketch the curve and indicate with an arrow the direction of the curve as *t* increases.

4. For $x = e^t - 1$ and $y = e^{2t}$, eliminate the parameter to find the Cartesian equation of the curve. Then sketch the curve and indicate with an arrow the direction of the curve as *t* increases.

5. For $x = \frac{1}{t}$ and $y = \sqrt{t} \cdot e^{-t}$, find $\frac{dy}{dx}$.

6. For the parametric equations $x = 1 + 4t - t^2$ and $y = 2 - t^3$, what is the equation for the tangent line to the curve at t = 1?

7. For the parametric equations $x = t^2 + 1$ and $y = e^t - 1$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For what values of t is the curve concave upward?

8. For the parametric equations $x = t^3 - 3t$ and $y = t^2 - 3$, find the points on the curve where:

- (a) the tangent line is horizontal
- (b) the tangent line is vertical
- (c) the tangent line has a slope of 1

9. Find the area enclosed by the curve $x = t^2 - 2t$, $y = \sqrt{t}$ and the y-axis.

10. Find the length of the curve for $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$.