Problem Set 13

1. For the functions

$$z = \cos(x + 4y)$$

$$x = 5t^4$$

$$y = \frac{1}{t}$$

use the chain rule to find $\frac{dz}{dt}$.

$$z = x^2 y^3$$

$$x = s \cdot cos(t)$$

$$y = 1 - 2 \cdot s \cdot t$$

use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

3. Use a tree diagram to write-out the chain rule for w = f(r,s,t), given:

$$r = r(x,y)$$

$$s = s(x,y)$$

$$t = t(x,y)$$

4. Use the chain rule to find the partial derivatives
$$\frac{\partial z}{\partial s}$$
, $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial u}$ for

$$z = x^4 + x^2 y$$

$$x = s + 2t - u$$

$$y = s \cdot t \cdot u^2$$

when
$$s = 4$$
, $t = 2$, and $u = 1$

5. Use the chain rule to find the partial derivatives $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$ for

$$P = \sqrt{u^2 + v^2 + w^2}$$

$$u = x \cdot e^y$$

$$v = y {\cdot} e^x$$

$$w=e^{xy} \\$$

when
$$x = 0$$
, $y = 2$

6. Use
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$
 to find $\frac{dy}{dx}$ for the equation $y \cdot \cos(x) = x^2 + y^2$

7. Use
$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$
 and $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$ to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the equation $x^2 + 2y^2 + 3z^2 = 1$.

8. The radius of a right circular cone is increasing at a rate of 1.8cm/s while its height is decreasing at a rate of 2.5cm/s. At what rate is the volume of the cone changing when the radius is 120cm and the height is 140cm?

- 9. The voltage, V, in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance, R, is slowly increasing as the resistor heats up. Use Ohm's law, V = IR, to find how the current, I, is changing at the moment when R = 400Ω , I = 0.08A, $\frac{dV}{dt}$ = -0.01V/s, and $\frac{dR}{dt}$ = $0.03\Omega/s$.
- 10. If z = f(x,y) where $x = r \cdot \cos(\theta)$ and $y = r \cdot \sin(\theta)$, find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$, then show that $(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2} \cdot (\frac{\partial z}{\partial \theta})^2$.